FAIRCHILD
SEMICロNロபСТのR

FM809／810

3－Pin μ C Supervisor Circuits

General Description

The FM809／810 are supervisor circuits that monitor power supply or other system voltages and issue reset pulse whenever the voltage being monitored is out of tolerance．Once asserted， the reset pulse is guaranteed to be valid for a minimum of 140 ms （ 256 ms typical）．FM809xx offers active low push－pull type of reset while FM810xx offers active high push－pull type． Several threshold voltages are offered to accommodate 5．0V， $3.3 \mathrm{~V}, 3.0 \mathrm{~V}$ and 2.7 V system voltages．

The low supply current（typically 2μ A）recommends FM809／810 devices for portable designs or wherever power saving is primary．

These devices are offered in space saving 3－pin SOT23 and SC70 packages．

Features

■ V_{TH} voltages of $4.63 \mathrm{~V}, 4.38 \mathrm{~V}, 4.00 \mathrm{~V}, 3.08 \mathrm{~V}, 2.93 \mathrm{~V}$ and 2.63 V
－RESET（FM809）or RESET（FM810）output

October 2002

■ 140 ms power－on RESET delay（minimum）
■ RESET operation guaranteed to 1.0 V
－Supply current only $2 \mu \mathrm{~A}$
■ No external components
－Operating Range
$--40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$（SOT23）
$--40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$（SC70）
■ SOT23－3 and SC70－3 packages

Applications

－Microcontrollers and Microprocessors
－Appliances
－Power－Supply Monitoring
－Portable Equipment
■ Automotive Systems

Typical Operating Circuit

Connection Diagram

FM809／810
SOT23－3 \＆SC70－3Packages

Absolute Maximum Ratings

Voltage on any terminal relative to GND

V_{CC}	-0.3 V to +6.0 V
RESET, RESET	-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Input Current	20 mA
Output Current: RESET, $\overline{\text { RESET }}$	20 mA

ESD Rating

Human Body Model	$\geq 2 \mathrm{KV}$
Machine Model	$\geq 200 \mathrm{KV}$
Rate of Rise of V_{CC}	$100 \mathrm{~V} / \mu \mathrm{s}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
SOT23-3 (derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right)$	320 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

These are stress ratings only, and functional operation is not implied for these levels or beyond. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Electrical Characteristics SOT23 Package ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
$\mathrm{V}_{\mathrm{CC}}=$ full range, as noted under conditions. See Note 1 .

Parameter	Symbol	Conditions		Min	Typ (Note 3)	Max	Units
Operating Voltage	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		1.0		5.5	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$		1.1		5.5	
Supply Current	I_{Cc}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}<5.5 \mathrm{~V} \\ & \mathrm{FM} 809 \mathrm{~J} / \mathrm{L} / \mathrm{M} \end{aligned}$			5	10	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}<3.6 \mathrm{~V} \\ & \mathrm{FM} 809 \mathrm{R} / \mathrm{S} / \mathrm{T} \end{aligned}$			2	6	
Reset Threshold	$\mathrm{V}_{\text {TH }}$	FM8xxL	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	4.40	4.63	4.86	V
		FM8xxM	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	4.18	4.38	4.52	
		FM8xxJ	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	3.90	4.00	4.18	
		FM8xxT	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	2.97	3.08	3.19	
		FM8xxS	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	2.79	2.93	3.00	
		FM8xxR $\quad \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		2.49	2.63	2.70	
Reset Threshold Tempco					30		ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ to Reset Delay (Note 2)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {TH }}$ to $\left(\mathrm{V}_{\text {TH }}-100 \mathrm{mV}\right)$			10	15	$\mu \mathrm{s}$
Reset Active Timout Period		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		140	256	560	ms
FM809 Output Low (気ESET)	V OL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}}(\mathrm{~min}), \mathrm{I}_{\mathrm{SINK}}=1.2 \mathrm{~mA}, \\ & \text { FM809R/S/T } \end{aligned}$				0.3	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}}(\mathrm{~min}), \mathrm{I}_{\mathrm{SINK}}=3.2 \mathrm{~mA}, \\ & \mathrm{FM} 809 \mathrm{~J} / \mathrm{L} / \mathrm{M} \end{aligned}$				0.4	
		$\mathrm{V}_{\mathrm{CC}}=<1.0 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=50 \mu \mathrm{~A}$				0.3	
FM809 Output High ($\overline{\text { RESET }}$)	V_{OH}	$\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{TH}}(\max), \mathrm{I}_{\text {SOURCE }}=500 \mu \mathrm{~A}(\mathrm{R} / \mathrm{S} / \mathrm{T})$		$0.8 \mathrm{~V}_{\mathrm{CC}}$			V
		$\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{TH}}(\max), \mathrm{I}_{\text {SOURCE }}=800 \mu \mathrm{~A}(\mathrm{~J} / \mathrm{M} / \mathrm{L})$		$\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$			
FM810 Output Low (RESET)	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}}(\mathrm{max}), \mathrm{I}_{\mathrm{SINK}}=1.2 \mathrm{~mA}, \\ & \text { FM810R/S/T } \end{aligned}$				0.3	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}}(\max), \mathrm{I}_{\mathrm{SINK}}=3.2 \mathrm{~mA}, \\ & \mathrm{FM} 810 \mathrm{~J} / \mathrm{L} / \mathrm{M} \end{aligned}$				0.4	
FM810 Output High (RESET)	V_{OH}	$1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\text {TH }}(\mathrm{min}), \mathrm{I}_{\text {SOURCE }}=150 \mu \mathrm{~A}$		$0.8 \mathrm{~V}_{\mathrm{CC}}$			V

Note 1: Testing in production is $25^{\circ} \mathrm{C}$ only. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ for $\mathrm{FM} 8 \mathrm{xxL} / \mathrm{M} / \mathrm{J}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ for $\mathrm{FM} 8 \mathrm{xxT} / \mathrm{S}$ and $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ for FM 8 xxR . Limits over temperature are guaranteed by design.
Note 2: RESET output is for FM809. RESET output is for FM810.
Note 3: Typical values are at $25^{\circ} \mathrm{C}$.
Note 4: Recommended minimum slew rate for the V_{CC} rampup is $200 \mathrm{mV} / \mathrm{sec}$ in the 0 to 2 V range for the device to function properly.

Absolute Maximum Ratings

Voltage on any terminal relative to GND

V_{CC}	-0.3 V to +6.0 V
RESET, RESET	-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Input Current	20 mA
Output Current: RESET, $\overline{\text { RESET }}$	20 mA

ESD Rating

Human Body model	1.5 KV
Machine model	$\geq 200 \mathrm{KV}$
Rate of Rise of V_{CC}	$100 \mathrm{~V} / \mu \mathrm{s}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
SC70-3	174 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

These are stress ratings only, and functional operation is not implied for these levels or beyond. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Electrical Characteristics SC70 Package ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
$\mathrm{V}_{\mathrm{CC}}=$ full range, as noted under conditions. See Note 1.

Parameter	Symbol	Conditions			Typ (Note 3)		Units
Operating Voltage	$V_{C C}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		$\begin{gathered} \text { IVIIn } \\ \hline 1.4 \end{gathered}$		Max 5.5	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		1.6		5.5	
Supply Current	${ }^{\text {c }}$ C	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V} \mathrm{FM} 809 \mathrm{~J} / \mathrm{L} / \mathrm{M}$			9	15	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}<3.6 \mathrm{~V} \mathrm{FM} 809 \mathrm{R} / \mathrm{S} / \mathrm{T}$			6	10	
Reset Threshold	$\mathrm{V}_{\text {TH }}$	FM8xxL	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4.40	4.63	4.86	V
		FM8xxM	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4.18	4.38	4.52	
		FM8xxJ	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3.90	4.00	4.18	
		FM8xxT	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.97	3.08	3.19	
		FM8xxS	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.79	2.93	3.00	
		FM8xxR	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.49	2.63	2.70	
Reset Threshold Tempco					30		ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ to Reset Delay (Note 2)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}^{\prime}$	mV)		10	15	$\mu \mathrm{s}$
Reset Active Timout Period		$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$		100	256	560	ms
FM809 Output Low (RESET)	V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {TH }}$	= $1.2 \mathrm{~mA}, \mathrm{FM} 809 \mathrm{R} / \mathrm{S} / \mathrm{T}$			0.35	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {TH }}$	$=3.2 \mathrm{~mA}, \mathrm{FM} 809 \mathrm{~J} / \mathrm{L} / \mathrm{M}$			0.4	
		$\mathrm{V}_{\mathrm{CC}}=<1$	0 $\mu \mathrm{A}$			0.3	
FM809 Output High ($\overline{\text { RESET }}$)	V_{OH}	$\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\text {TH }}$	RCE $=500 \mu \mathrm{~A}(\mathrm{R} / \mathrm{S} / \mathrm{T})$	$0.8 \mathrm{~V}_{\text {CC }}$			V
		$\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\text {TH }}$	RCE $=800 \mu \mathrm{~A}(\mathrm{~J} / \mathrm{M} / \mathrm{L})$	$\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$			
FM810 Output Low (RESET)	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {TH }}$	$=1.2 \mathrm{~mA}, \mathrm{FM} 810 \mathrm{R} / \mathrm{S} / \mathrm{T}$			0.35	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {TH }}$	$=3.2 \mathrm{~mA}, \mathrm{FM} 810 \mathrm{~J} / \mathrm{L} / \mathrm{M}$			0.4	
FM810 Output High (RESET)	V_{OH}	$1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{C}}$, $I_{\text {SOURCE }}=150 \mu \mathrm{~A}$	$0.8 \mathrm{~V}_{\mathrm{CC}}$			V

Note 1: Testing in production is $25^{\circ} \mathrm{C}$ only. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ for $\mathrm{FM} 8 \mathrm{xxL} / \mathrm{M} / \mathrm{J}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ for $\mathrm{FM} 8 \mathrm{xxT} / \mathrm{S}$ and $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ for FM 8 xxR . Limits over temperature are guaranteed by design
Note 2: $\overline{R E S E T}$ output is for FM809. RESET output is for FM810.
Note 3: Typical values are at $25^{\circ} \mathrm{C}$.

3

Pin Descriptions

Pin Number	Name	Function
1	GND	GROUND
2	$\overline{\text { RESET }}^{\star}$	RESET (RESET) remains LOW (HIGH) while $V_{C C}$ is below V_{TH}, and for at least 140 ms after V_{CC} rises above V_{TH}.
3	$\mathrm{~V}_{\mathrm{CC}}$	

* with overbar, FM809 (RESET); without, FM810 (RESET).

Circuit Timing (e.g.: FM809)

When operating properly with 5 V in (for example), $\mathrm{V}_{\text {OUT }}$ will also be about 5 V . When $\mathrm{V}_{\text {IN }}$ starts to fall, $\mathrm{V}_{\text {OUT }}$ will follow it down as shown. When $\mathrm{V}_{\text {IN }}$ drops below V_{TH}, $\mathrm{V}_{\text {OUT }}$ drops to ground ("issues a RESET") and stays there unless V_{IN} also falls below its minimum operating voltage, approx. 1V. At this point, the supervisor loses control, and its output may rise, only to again follow V_{IN} down to the ground.

When $\mathrm{V}_{\text {IN }}$ begins to rise, $\mathrm{V}_{\text {OUt }}$ follows it until 1.0 V or so is reached, whereupon the device regains control, $\mathrm{V}_{\text {OUT }}$ is pulled to ground, etc. When $\mathrm{V}_{\text {IN }}$ rises above $\mathrm{V}_{\mathrm{TH}}, \mathrm{V}_{\text {OUT }}$ comes out of RESET 140 ms later.

If it is required that a lower value than GND +1.0 V is needed on RESET signal during $\mathrm{V}_{\mathrm{CC}} \leq 1 \mathrm{~V}$, a 100 K resistor may be used on the device output (to GND for the FM809, to V_{CC} for the FM810).

Ordering Information (FM809)

Part Number	Top Marking	RESET Threshold (V)	Output Type	Package Type	Packing Method
FM809LS3X	09L	4.63	Push-Pull, active LOW	3-Pin, SOT23	3000 units in T\&R
FM809MS3X	09M	4.38	Push-Pull, active LOW	3-Pin, SOT23	3000 units in T\&R
FM809JS3X	09J	4.00	Push-Pull, active LOW	3-Pin, SOT23	3000 units in T\&R
FM809TS3X	09T	3.08	Push-Pull, active LOW	3-Pin, SOT23	3000 units in T\&R
FM809SS3X	09S	2.93	Push-Pull, active LOW	3-Pin, SOT23	3000 units in T\&R
FM809RS3X	09R	2.63	Push-Pull, active LOW	3-Pin, SOT23	3000 units in T\&R
FM809LP3X	VLY	4.63	Push-Pull, active LOW	3-Pin, SC70	3000 units in T\&R
FM809MP3X	VMY	4.38	Push-Pull, active LOW	3-Pin, SC70	3000 units in T\&R
FM809JP3X	VJY	4.00	Push-Pull, active LOW	3-Pin, SC70	3000 units in T\&R
FM809TP3X	VTY	3.08	Push-Pull, active LOW	3-Pin, SC70	3000 units in T\&R
FM809SP3X	VSY	2.93	Push-Pull, active LOW	3-Pin, SC70	3000 units in T\&R
FM809RP3X	VRY	2.63	Push-Pull, active LOW	3-Pin, SC70	3000 units in T\&R

Note 4: Devices listed above feature 250 ms typical Reset Pulse width. Consult Fairchild sales for other reset pulse width options.

Ordering Information (FM810)

Part Number	Top Marking	RESET Threshold (V)	Output Type	Package Type	Packing Method
FM810LS3X	10L	4.63	Push-Pull, active HIGH	3-Pin, SOT23	3000 units in T\&R
FM810MS3X	10M	4.38	Push-Pull, active HIGH	3-Pin, SOT23	3000 units in T\&R
FM810JS3X	10J	4.00	Push-Pull, active HIGH	3-Pin, SOT23	3000 units in T\&R
FM810TS3X	10T	3.08	Push-Pull, active HIGH	3-Pin, SOT23	3000 units in T\&R
FM810SS3X	10S	2.93	Push-Pull, active HIGH	3-Pin, SOT23	3000 units in T\&R
FM810RS3X	10R	2.63	Push-Pull, active HIGH	3-Pin, SOT23	3000 units in T\&R
FM810LP3X	ZLY	4.63	Push-Pull, active HIGH	3-Pin, SC70	3000 units in T\&R
FM810MP3X	ZMY	4.38	Push-Pull, active HIGH	3-Pin, SC70	3000 units in T\&R
FM810JP3X	ZJY	4.00	Push-Pull, active HIGH	3-Pin, SC70	3000 units in T\&R
FM810TP3X	ZTY	3.08	Push-Pull, active HIGH	3-Pin, SC70	3000 units in T\&R
FM810SP3X	ZSY	2.93	Push-Pull, active HIGH	3-Pin, SC70	3000 units in T\&R
FM810RP3X	ZRY	2.63	Push-Pull, active HIGH	3-Pin, SC70	3000 units in T\&R

Note 5: Devices listed above feature 250 ms typical Reset Pulse width. Consult Fairchild sales for other reset pulse width options

Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMMENDATION

SOT-23 Package Dimensions

FS Pkg Code AU

Physical Dimensions inches (millimeters) unless otherwise noted

Land Pattern Recommendation
SC70 Package Dimensions

Life Support Policy

Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Fairchild Semiconductor Corporation. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Americas	Fairchild SemiconductorEurope			Fairchild Semiconductor Hong Kong	Fairchild Semiconductor Japan Ltd.
Customer Response Center		Fax:	+44 (0) 1793-856858	8/F, Room 808, Empire Centre	4F, Natsume Bldg.
Tel. 1-888-522-5372	Deutsch	Tel:	+49 (0) 8141-6102-0	68 Mody Road, Tsimshatsui East	2-18-6, Yushima, Bunkyo-ku
	English		+44 (0) 1793-856856	Kowloon. Hong Kong	Tokyo, 113-0034 Japan
	Français		+33 (0) 1-6930-3696	Tel; +852-2722-8338	Tel: 81-3-3818-8840
	Italiano	Tel:	+39 (0) 2-249111-1	Fax: +852-2722-8383	Fax: 81-3-3818-8841

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

