SEMICONDUCTOR

NC7SZ00 TinyLogic[™] UHS 2-Input NAND Gate

General Description

The NC7SZ00 is a single 2-Input NAND Gate from Fairchild's Ultra High Speed Series of TinyLogicTM. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.8V to 5.5V V_{CC} operating range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 6V independent of V_{CC} operating voltage.

Features

- Space saving SOT23 or SC70 5-lead package
- Ultra High Speed; t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC}

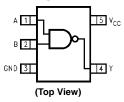
October 1996

Revised June 2000

- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.8V–5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ00M5	MA05B	7Z00	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel
NC7SZ00M5X	MA05B	7Z00	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7SZ00P5	MAA05A	Z00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel
NC7SZ00P5X	MAA05A	Z00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel


Logic Symbol

Pin Descriptions

Т

Connection Diagram

Function Table

Pin Names	Description		$\mathbf{Y} = \mathbf{A}\mathbf{E}$	3
A, B	Inputs		Inputs	Output
Y	Output	Α	В	Y
		L	L	Н
		L	н	н
		н	L	н
		н	н	L
		H = HIGH Logic Level L = LOW Logic Level		
is a trademark of Fairchild	Semiconductor Corporation.			

© 2000 Fairchild Semiconductor Corporation DS012156

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

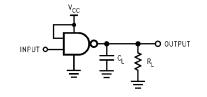
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (I _{IK})	
@V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ V _{OUT} > 6V, V _{CC} = GND	+20 mA
DC Output Current (I _{OUT})	± 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	\pm 50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23–5	200 mW
SC70–5	150 mW

Recommended Operating Conditions (Note 2)

Supply Voltage Operating (V_{CC})	1.8V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t _r , t _f)	
V _{CC} @ 1.8V, 2.5V ±0.2V	0 ns/V to 20 ns/V
$V_{CC} @ \ 3.3V \pm 0.3V$	0 ns/V to 10 ns/V
$V_{CC} @ 5.0V \pm 0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W
Note 1: Absolute maximum ratings are DC values b	beyond which the device

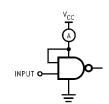
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	V _{CC}		T _A = +25°C	;	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Units		nutions
VIH	HIGH Level Input Voltage	1.8	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3-5.5	0.70 V _{CC}			$0.70 \ V_{CC}$		v		
V _{IL}	LOW Level Input Voltage	1.8			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3–5.5			0.30 V _{CC}		0.30 V _{CC}	v		
V _{OH}	HIGH Level Output Voltage	1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2		V	V – V	I _{OH} = -100 μA
		3.0	2.9	3.0		2.9		v	VIN – VIL	1 _{OH} = -100 μA
		4.5	4.4	4.5		4.4				
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3		v		$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.8		0.0	0.1		0.1			1 100 1
		2.3		0.0	0.1		0.1	V	V – V	
		3.0		0.0	0.1		0.1	v	v _{IN} = v _{IH}	I _{OL} = 100 μA
		4.5		0.0	0.1		0.1			
		2.3		0.10	0.3		0.3			I _{OL} = 8 mA
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55	v		I _{OL} = 24 mA
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0-5.5			±1		±10	μA	V _{IN} = 5.5\	/, GND
I _{OFF}	Power Off Leakage Current	0.0			1		10	μA	V _{IN} or V _O	_{UT} = 5.5V
I _{CC}	Quiescent Supply Current	1.8-5.5			2.0		20	μΑ	V _{IN} = 5.5\	/, GND

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}$	C to +85°C	Units	Conditions	Fig. No.	
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	FIG. NO.
t _{PLH} ,	Propagation Delay	1.8	2.0	4.5	9.5	2.0	10.0			
t _{PHL}		2.5 ± 0.2	0.8	3.0	6.5	0.8	7.0	ns	$C_{L} = 15 \text{ pF},$	Figures
		3.3 ± 0.3	0.5	2.4	4.5	0.5	4.7	115	$R_L = 1 M\Omega$	1, 3
		5.0 ± 0.5	0.5	2.0	3.9	0.5	4.1			
t _{PLH,}	Propagation Delay	3.3 ± 0.3	1.5	2.9	5.0	1.5	5.2	ns	C _L = 50 pF, Figure	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.4	4.3	0.8	4.5	115	$R_L = 500\Omega$	1, 3
C _{IN}	Input Capacitance	0		4				pF		
C _{PD}	Power Dissipation Capacitance	3.3		24				pF	(Note 3)	Figure 2
		5.0		30		1		PΓ	(11018-3)	r igule z


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} \text{static}).$

AC Loading and Waveforms

 $\rm C_L$ includes load and stray capacitance Input PRR = 1.0 MHz; $\rm t_w$ = 500 ns

FIGURE 1. AC Test Circuit

Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

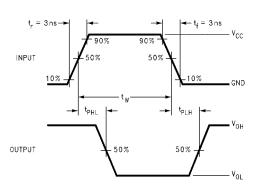
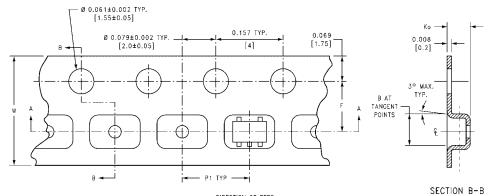


FIGURE 3. AC Waveforms


www.fairchildsemi.com

Tape and Reel Specification

Tape Format									
Package	Таре	Number	Cavity	Cover Tape					
Designator	Section	Cavities	Status	Status					
	Leader (Start End)	125 (typ)	Empty	Sealed					
M5, P5	Carrier	250	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					
	Leader (Start End)	125 (typ)	Empty	Sealed					
M5X, P5X	Carrier	3000	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					

TAPE DIMENSIONS inches (millimeters)

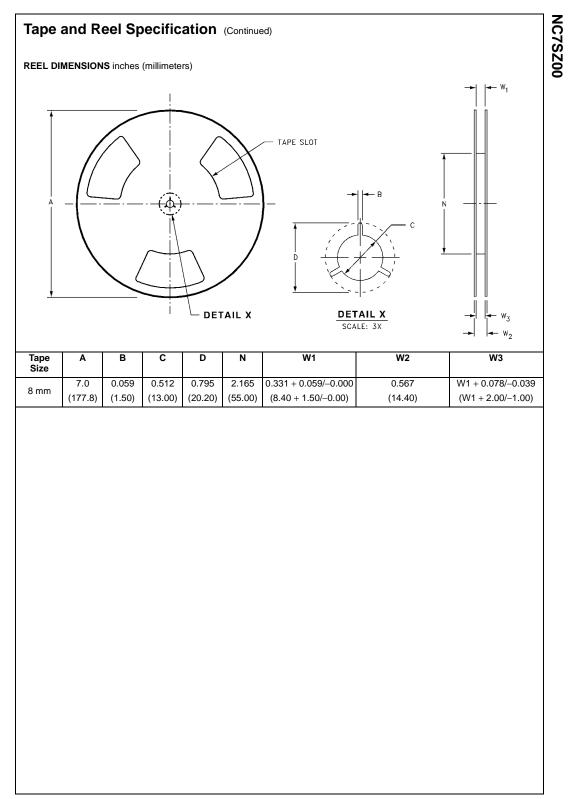
DIRECTION OF FEED ------

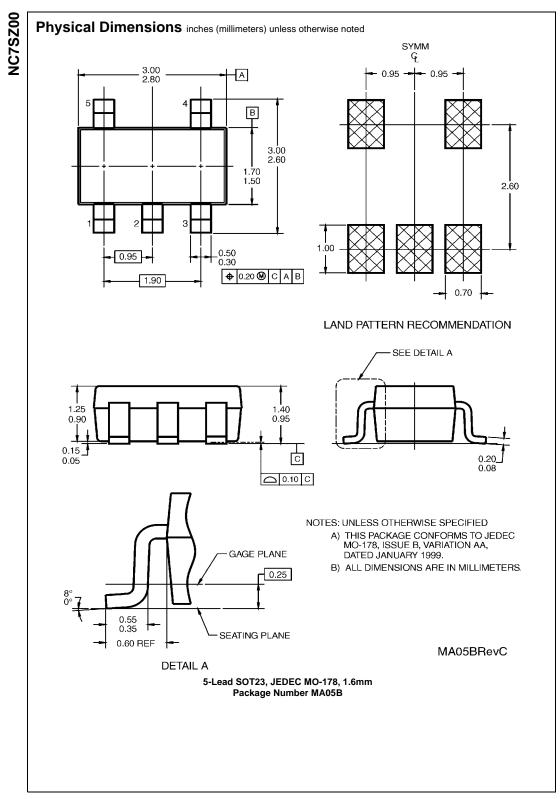
R 1.181 MIN. [30]

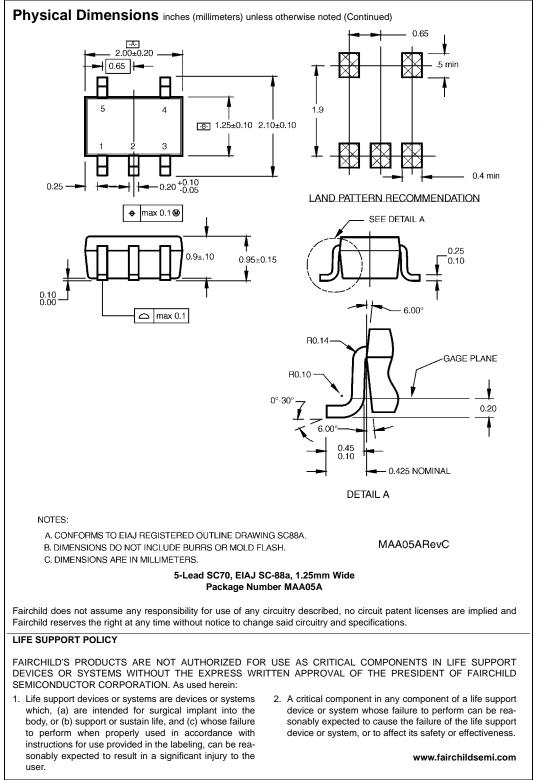
BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
		(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

www.fairchildsemi.com


A TYP @ TANGENT POINTS


3° MAX TYP


CAVITY SYMM

ę

SECTION A-A

NC7SZ00 TinyLogic™ UHS 2-Input NAND Gate

www.fairchildsemi.com