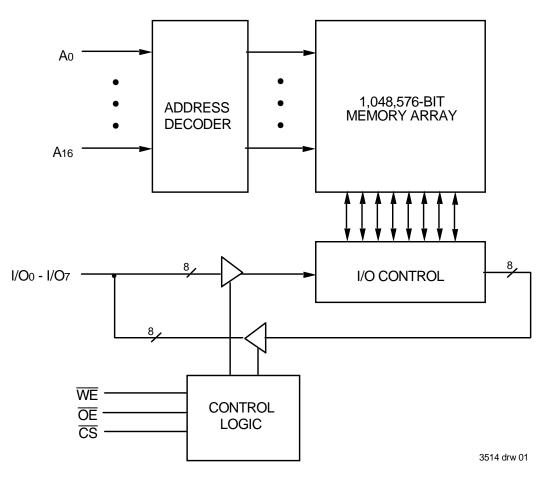


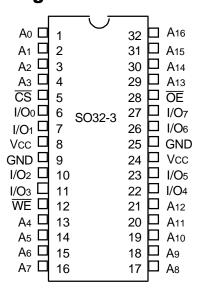
CMOS Static RAM 1 Meg (128K x 8-Bit) Revolutionary Pinout

Features


- 128K x 8 advanced high-speed CMOS static RAM
- JEDEC revolutionary pinout (center power/GND) for reduced noise.
- Equal access and cycle times – Commercial and Industrial: 12/15/20ns
- One Chip Select plus one Output Enable pin
- Bidirectional inputs and outputs directly TTL-compatible
- Low power consumption via chip deselect
- Available in a 32-pin 400 mil Plastic SOJ.

Description

The IDT71124 is a 1,048,576-bit high-speed static RAM organized as 128K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a costeffective solution for high-speed memory needs. The JEDEC centerpower/GND pinout reduces noise generation and improves system performance.


The IDT71124 has an output enable pin which operates as fast as 6ns, with address access times as fast as 12ns available. All bidirectional inputs and outputs of the IDT71124 are TTL-compatible and operation is from a single 5V supply. Fully static asynchronous circuitry is used; no clocks or refreshes are required for operation. The IDT71124 is packaged in a 32-pin 400 mil Plastic SOJ.

Functional Block Diagram

FEBRUARY 2001

1

3514 drw 02

SOJ **Top View**

Truth Table^(1,2)

CS	ŌĒ	WE	I/O	Function
L	L	Н	DATAOUT	Read Data
L	Х	L	DATAIN	Write Data
L	Н	Н	High-Z	Output Disabled
Н	Х	Х	High-Z	Deselected - Standby (ISB)
VHC ⁽³⁾	Х	Х	High-Z	Deselected - Standby (IsB1)

NOTES:

1. $H = V_{IH}$, $L = V_{IL}$, x = Don't care. 2. VLC = 0.2V, VHC = VCC - 0.2V. 3. Other inputs $\ge VHC$ or $\le VLC$.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Value	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0 ⁽²⁾	V
Та	Operating Temperature	0 to +70	٥C
Tbias	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-55 to +125	٥C
Рт	Power Dissipation	1.25	W
Ιουτ	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc + 0.5V.

Capacitance $(T_{A} = +25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	Vin = 3dV	8	pF
Cı/o	I/O Capacitance	Vout = 3dV	8	pF
				3514 tbl 03

NOTE:

3514 tbl 01

1. This parameter is guaranteed by device characterization, but is not production tested.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	5.0V ± 10%
Industrial	–40°C to +85°C	0V	5.0V ± 10%

3514 tbl 04

3514 tbl 02

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
Viн	Input High Voltage	2.2		Vcc +0.5	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	۷

3514 tbl 05

DC Electrical Characteristics

(Vcc = 5.0V ± 10%, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
11	Input Leakage Current	Vcc = Max., VIN = GND to Vcc		5	μA
Ilo	Output Leakage Current	Vcc = Max., \overline{CS} = VIH, Vout = GND to Vcc		5	μA
Vol	Output Low Voltage	Iol = 8mA, Vcc = Min.		0.4	V
Vон	Output High Voltage	Iон = -4mA, Vcc = Min.	2.4		V

3514 tbl 06

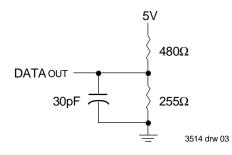
3514 tbl 07

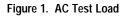
DC Electrical Characteristics⁽¹⁾ (Vcc = 5.0V ± 10%, VLc = 0.2V, VHc = Vcc - 0.2V)

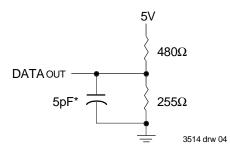
71124S12 71124S15 71124S20 Symbol Parameter Com'l. Ind. Com'l. Com'l. Ind. Ind. Unit Dynamic Operating Current 160 160 155 155 140 140 Icc mΑ $\overline{CS} \le VIL$, Outputs Open, Vcc = Max., f = fMAX⁽²⁾ Standby Power Supply Current (TTL Level) 40 40 40 40 40 40 mΑ **I**SB $\overline{CS} \ge VH$, Outputs Open, Vcc = Max., f = fMAX⁽²⁾ Full Standby Power Supply Current (CMOS Level) 10 10 10 10 10 10 mΑ SB1 $\overline{CS} \ge$ VHc, Outputs Open, Vcc = Max., f = 0⁽²⁾ $VIN \leq VLC \text{ or } VIN \geq VHC$

NOTES:

1. All values are maximum guaranteed values.


2. fmax = 1/trc (all address inputs are cycling at fmax); f = 0 means no address input lines are changing.


AC Test Conditions


Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1 and 2

3514 tbl 08

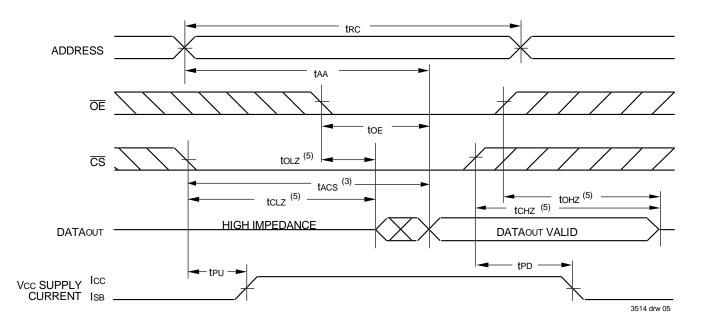
AC Test Loads

*Including jig and scope capacitance.

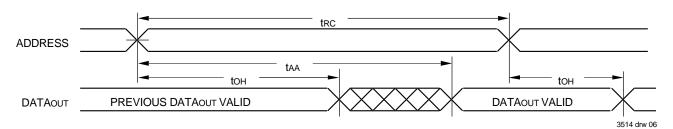
Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

3514 tbl 09

AC Electrical Characteristics

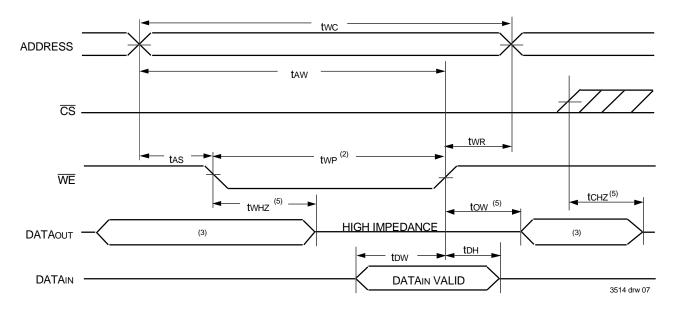

(Vcc = 5.0V ± 10%, Commercial and Industrial Temperature Ranges)

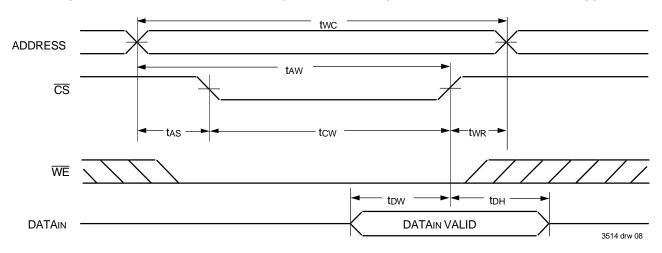
-								
		7112	71124\$12		71124S15		71124S20	
Symbol	Parameter	Min.	Max.	Min.	Мах.	Min.	Мах.	Unit
READ CYCLE								
trc	Read Cycle Time	12		15		20		ns
taa	Address Access Time		12		15		20	ns
tacs	Chip Select Access Time		12		15		20	ns
tcLz ⁽¹⁾	Chip Select to Output in Low-Z	3	—	3		3		ns
tснz ⁽¹⁾	Chip Deselect to Output in High-Z	0	6	0	7	0	8	ns
toe	Output Enable to Output Valid		6		7		8	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0		0		0		ns
tонz ⁽¹⁾	Output Disable to Output in High-Z	0	5	0	5	0	7	ns
toн	Output Hold from Address Change	4		4		4		ns
tpu ⁽¹⁾	Chip Select to Power-Up Time	0		0		0		ns
tPD ⁽¹⁾	Chip Deselect to Power-Down Time		12		15		20	ns
WRITE CYCL	E			-			-	
twc	Write Cycle Time	12		15		20		ns
taw	Address Valid to End of Write	8		12		15		ns
tcw	Chip Select to End of Write	8		12		15		ns
tas	Address Set-up Time	0		0		0		ns
twp	Write Pulse Width	8		12		15		ns
twr	Write Recovery Time	0	_	0	_	0	_	ns
tDW	Data Valid to End-of-Write	6		8		9		ns
tdн	Data Hold Time	0		0		0		ns
tow ⁽¹⁾	Output active from End-of-Write	3	—	3		4		ns
twHz ⁽¹⁾	Write Enable to Output in High-Z	0	5	0	5	0	8	ns


NOTE:

1. This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

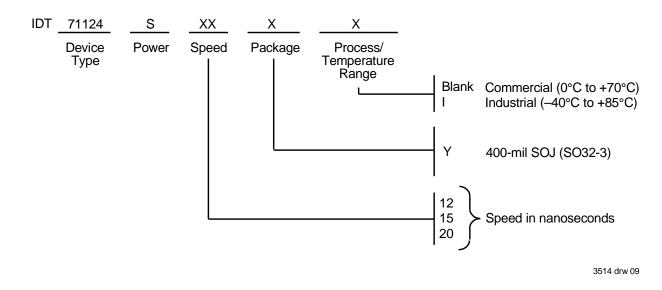
Timing Waveform of Read Cycle No. 1⁽¹⁾


Timing Waveform of Read Cycle No. 2^(1,2,4)


NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, \overline{CS} is LOW.
- 3. Address must be valid prior to or coincident with the later of \overline{CS} transition LOW; otherwise tak is the limiting parameter.
- 4. OE is LOW.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)^(1,2,4)


Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)^(1,4)

NOTES:

- 1. A write occurs during the overlap of a LOW \overline{CS} and a LOW \overline{WE} .
- 2. \overline{OE} is continuously HIGH. During a \overline{WE} controlled write cycle with \overline{OE} LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the ČS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS must be active during the tcw write period.
- 5. Transition is measured ±200mV from steady state.

Ordering Information

Datasheet Document History

8/5/99 Updated to new format	
Pg. 3 Removed military entries on DC table	
Pg. 4 Removed Note 1 and renumbered footnotes	
Pg. 6 Revised footnotes on Write Cycle No. 1 diagram	
8/13/99 Pg. 8 Added Datasheet Document History	
9/30/99 Pg. 1, 3, 4, 7 Added 12ns, 15ns, and 20ns industrial temperature speed	grade offerings
2/18/00 Pg. 3 Revise ISB for Industrial Temperature offerings to meet com	merical specifications
3/14/00 Pg. 3 Revised ISB to accomidate speed functionality	
4/01/00 Pg.4 Tightened tAW, tCW, tWP and tDW within the AC Electrical	Characteristics
8/09/00 Not recommended for new designs	
02/01/01 Removed "Not recommended for new designs"	

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: sramhelp@idt.com 800-544-7726, x4033

The IDT logo is a registered trademark of Integrated Device Technology, Inc.