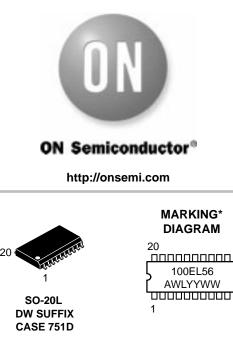
5V ECL Dual Differential 2:1 Multiplexer

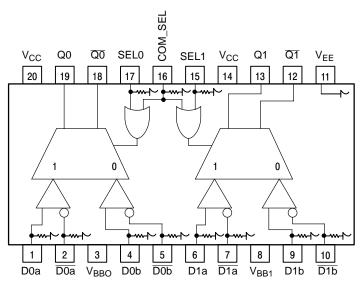

The MC100EL56 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or other skew sensitive signals. Multiple V_{BB} pins are provided to ease AC coupling input signals.

The V_{BB} pins, an internally generated voltage supply, are available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

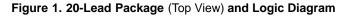
The device features both individual and common select inputs to address both data path and random logic applications.

The differential inputs have special circuitry which ensures device stability under open input conditions. When both differential inputs are left open, the D input will pull down to V_{EE} . The \overline{D} input will bias around $V_{CC}/2$ forcing the Q output LOW.

- 440 ps Typical Propagation Delays
- Separate and Common Select
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $V_{CC} = 4.2$ V to 5.7 V with $V_{EE} = 0$ V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input Pulldown Resistors on D(s), SEL(s), and COM_SEL
- Q Output will Default LOW with Inputs Open or at $V_{\mbox{\scriptsize EE}}$


A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week

*For additional marking information, refer to Application Note AND8002/D.


ORDERING INFORMATION

Device	Device Package		
MC100EL56DW	SO-20L	38 Units/Rail	
MC100EL56DWR2	SO-20L	1000 Tape & Reel	

+For additional tape and reel information, refer to Brochure BRD8011/D.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

PIN DESCRIPTION

PIN	FUNCTION
D0a* - D1a*	ECL Input Data a
<u>D0a</u> * - <u>D1a</u> *	ECL Input Data a Invert
D0b* - D1b*	ECL Input Data b
D0b* - D1b*	ECL Input Data b Invert
SEL0* - SEL1*	ECL Indiv. Select Input
COM_SEL*	ECL Common Select Input
V _{BB0} , V _{BB1}	Output Reference Voltage
Q0 - Q1	ECL True Outputs
<u>Q0</u> - <u>Q1</u>	ECL Inverted Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply

* Pins will default LOW when left open.

TRUTH TABLE

SEL0	SEL1	COM_SEL	Q0, Q0	Q1, Q1
Х	Х	Н	а	а
L	L	L	b	b
L	н	L	b	а
н	Н	L	а	а
Н	L	L	а	b

ATTRIBUTES

Characteris	Characteristics						
Internal Input Pull-down Resistor	75 kΩ						
Internal Input Pull-up Resistor	N/A						
ESD Protection	Human Body Model Machine Model Charge Device Model	> 2 kV > 200 V > 4 kV					
Moisture Sensitivity, Indefinite Time	Out of Drypack (Note 1)	Level 1					
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in					
Transistor Count		147					
Meets or Exceeds JEDEC Spec El/	VJESD78 IC Latchup Test						

1. Refer to Application Note AND8003/D for additional information.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_EE	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	SO-20L SO-20L	90 60	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SO-20L	30 to 35	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

2. Maximum Ratings are those values beyond which device damage may occur.

100EL SERIES PECL DC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 3)

			-40 °C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		20	24		20	24		20	24	mA
V _{OH}	Output HIGH Voltage (Note 4)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 4)		3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)			3525	3190		3525	3190		3525	mV
V_{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
V _{IHCMR}	Common Mode Range (Differential) (Note 5) $\begin{array}{l} V_{PP} \ < \ 500 \ mV \\ V_{PP} \ \geq \ 500 \ mV \end{array}$	1.3 1.5		4.6 4.6	1.2 1.4		4.6 4.6	1.2 1.4		4.6 4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.
Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

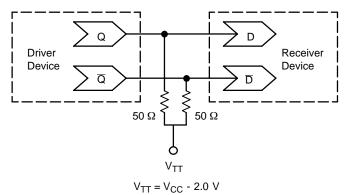
		-40 °C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		20	24		20	24		20	24	mA
V _{OH}	Output HIGH Voltage (Note 7)		-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1 165		-880	-1 165		-880	-1 165		-880	mV
VIL	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Common Mode Range (Differential) (Note 8) $\begin{array}{l} V_{PP} < 500 \text{ mV} \\ V_{PP} \ge 500 \text{ mV} \end{array}$	-3.7 -3.5		-0.4 -0.4	-3.8 -3.6		-0.4 -0.4	-3.8 -3.6		-0.4 -0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.5			μA

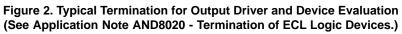
100EL SERIES NECL DC CHARACTERISTICS V_{CC} = 0.0 V; V_{EE} = -5.0 V (Note 6)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

 Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.
 Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and V and 1 V.

AC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0.0 V or V_{CC} = 0.0 V; V_{EE} = -5.0 V (Note 9)

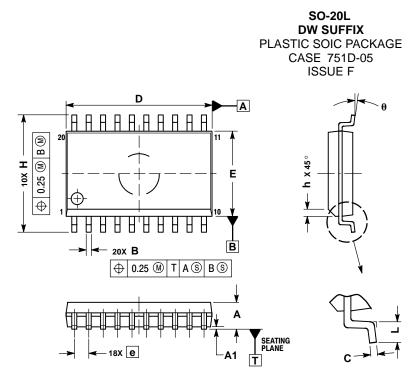

			-40 °C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					1					GHz
t _{PLH} t _{PHL}	Propagation D (Diff) Delay D (SE) to Output SEL COMSEL	340 290 430 430		540 590 730 730	360 310 440 440		560 610 740 740	380 330 450 450		580 630 750 750	ps
t _{SKEW}	Within-Device Skew (Note 10)		40	80		40	80		40	80	ps
t _{SKEW}	Duty Cycle Skew (Note 11)			100			100			100	ps
t _{JITTER}	Random Clock Jitter (RMS)					1.5					ps
V _{PP}	Input Swing (Note 12)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% - 80%)	200		540	200		540	200		540	ps


9. V_{EE} can vary +0.8 V / -0.5 V.

10. Within-device skew is defined as identical transitions on similar paths through a device.

11. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

12. V_{PP(}min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.



Resource Reference of Application Notes

AN1404	-	ECLinPS Circuit Performance at Non-Standard $\rm V_{IH}$ Levels
AN1405	-	ECL Clock Distribution Techniques
AN1406	-	Designing with PECL (ECL at +5.0 V)
AN1503	-	ECLinPS I/O SPICE Modeling Kit
AN1504	-	Metastability and the ECLinPS Family
AN1560	-	Low Voltage ECLinPS SPICE Modeling Kit
AN1568	-	Interfacing Between LVDS and ECL
AN1596	-	ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	-	Using Wire-OR Ties in ECLinPS Designs
AN1672	-	The ECL Translator Guide
AND8001	-	Odd Number Counters Design
AND8002	-	Marking and Date Codes
AND8020	-	Termination of ECL Logic Devices
AND8090	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS
- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M. 1994.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL 5
- BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS							
DIM	MIN	MAX						
Α	2.35	2.65						
A1	0.10	0.25						
В	0.35	0.49						
С	0.23	0.32						
D	12.65	12.95						
Е	7.40	7.60						
e	1.27	BSC						
Н	10.05	10.55						
h	0.25	0.75						
L	0.50	0.90						
θ	0 °	7 °						

ON Semiconductor and 🖤 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.