FAIRCHILD

SEMICONDUCTOR

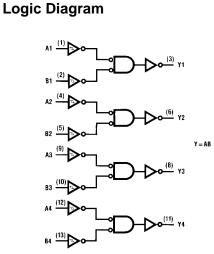
74LVX132 Low Voltage Quad 2-Input NAND Schmitt Trigger

General Description

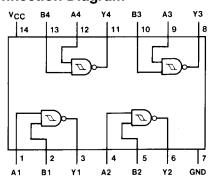
The LVX132 contains four 2-input NAND Schmitt Trigger Gates. The pin configuration and function are the same as the LVX00 but the inputs have hysteresis between the positive-going and negative-going input thresholds, which are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals, thus providing greater noise margins than conventional gates. The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.

October 1996

Revised March 1999


Features

- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance


Ordering Code:

Order Number	Package Number	Package Description						
74LVX132M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow						
74LVX132SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide						
74LVX132MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide						
Devices also available in Tapa and Pool. Specify by appanding suffix latter "V" to the ordering code								

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Connection Diagram

Pin Descriptions

Pin Names	Descriptions
A _n , B _n	Inputs
Yn	Outputs

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{1} = -0.5V$	–20 mA
DC Input Voltage (VI)	-0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions		
		• 00	Min	Тур	Max	Min	Max	Units	conditions	
V _t +	Positive Threshold	3.0			2.2		2.2	V		
V _t -	Negative Threshold	3.0	0.9			0.9		V		
V _H	Hysteresis	3.0	0.3		1.2	0.3	1.2	V		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IL} \text{ or } V_{IH}$	$I_{OH} = -50 \ \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V	$V_{IN} = V_{IL} \text{ or } V_{IH}$	$I_{OH}=-50~\mu A$
		3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IL} \text{ or } V_{IH}$	$I_{OL} = 50 \ \mu A$
	Output Voltage	3.0		0.0	0.1		0.1	V		$I_{OL}=50~\mu A$
		3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μA	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	3.6			2.0		20	μA	$V_{IN} = V_{CC}$ or GN	D

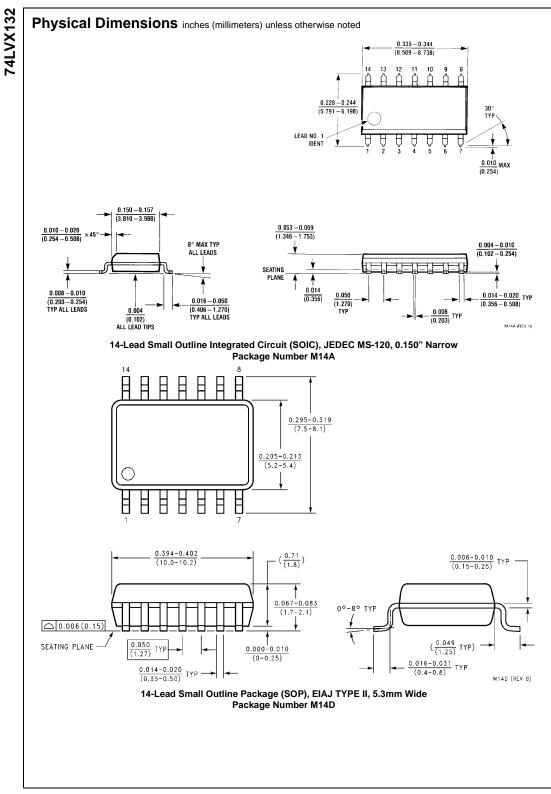
Noise Characteristics (Note 3)

Symbol	Parameter	V _{CC} (V)	T _A =	25°C	Units	C _L (pF)	
	i di dificici		Тур	Limit			
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.3	0.5	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.3	-0.5	V	50	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	
Note 2: In	p_{1}						

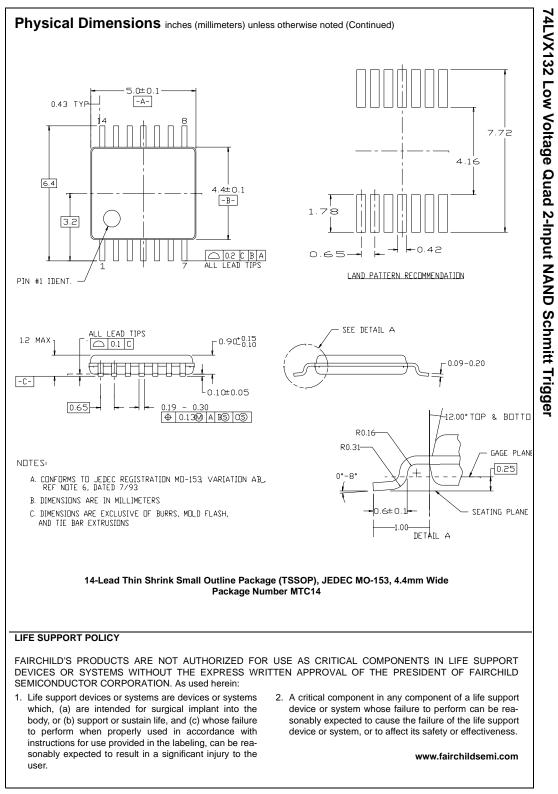
Note 3: Input $t_r = t_f = 3$ ns

Symbol	Symbol Parameter	V _{cc}	$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	Units	C _L (pF)	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	o [[] (bi)
t _{PLH}	Propagation	2.7		7.0	11.5	1.0	13.0		15
t _{PHL}	Delay Time			10.5	16.0	1.0	18.7	ns	50
		3.3 ± 0.3		6.1	10.6	1.0	12.5	115	15
				9.0	15.4	1.0	17.5		50
t _{OSLH}	Output to Output	2.7			1.5		1.5		50
t _{OSHL}	Skew (Note 4)	3.3			1.5		1.5	ns	

Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|$, $t_{OSHL} = |t_{PHLm} - t_{PHLn}|$


Capacitance

Symbol	Parameter		$\textbf{T}_{\textbf{A}}=+25^{\circ}\textbf{C}$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
	i di diffetter	Min	Тур	Max	Min	Max	- Onito
CIN	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation Capacitance (Note 5)		18				pF


Note 5: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{6 (per Gate)}$

www.fairchildsemi.com

4

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.