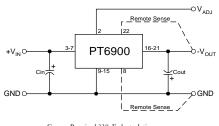
12 Watt 5V/3.3V Input Plus to Minus Voltage Converter

SLTS041A

(Revised 6/30/2000)

- +5V/+3.3V Input Voltage
- Negative Output
- Remote Sense
- Adjustable Output Voltage


Pin-Out Information

• 23-pin SIP Package

The PT6900 is a series of highperformance ISRs, that provide plus to minus voltage conversion, up to 12 watt in a 23-pin SIP package. The PT6900 is designed to supply regulated negative voltages for powering the latest ECL (-5.2V) and GaAs (-2.0V) ICs used in high-speed fiber optic communications. A 330µF electrolytic capacitor is required on the input and output for proper operation.

Please note that this product is not short-circuit protected.

Standard Application

 $C_{in} = Required 330 \mu F \ electrolytic \\ C_{out} = Required 330 \mu F \ electrolytic$

Specifications

Pin	Function	Pin	Function
1	Do not connect	13	GND
2	V _{out} Adjust	14	GND
3	Vin	15	GND
4	Vin	16	Vout
5	Vin	17	Vout
6	Vin	18	Vout
7	Vin	19	Vout
8	Remote Sense GND	20	Vout
9	GND	21	Vout
10	GND	22	Remote Sense Vout
11	GND	23	Do not connect
12	GND		

Ordering Information							
+5V Input	+3.3V Input	Vout					
	PT6904□ PT6905□						

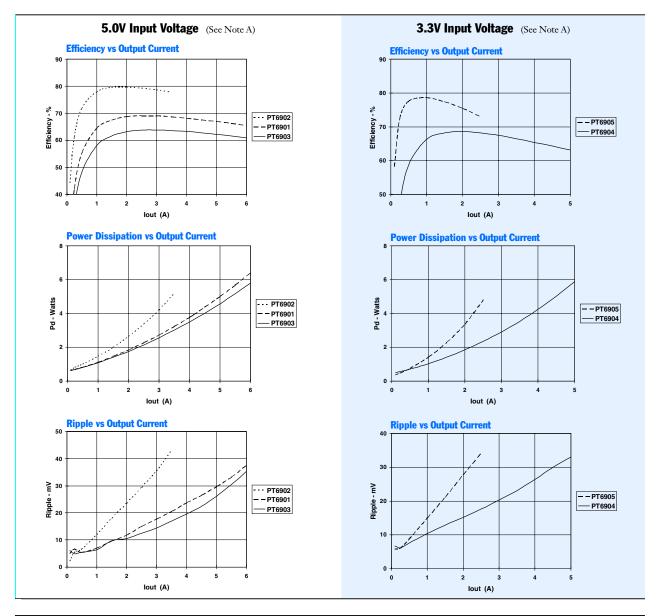
PT Series Suffix (PT1234X)

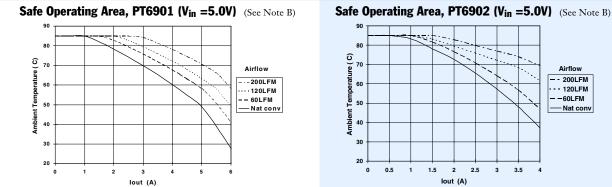
Case/Pin Configuration

Comgutation	
Vertical Through-Hole	Ν
Horizontal Through-Hole	Α
Horizontal Surface Mount	C
(For dimensions and PC be see Package Styles 1100 an	oard layout, 1d 1110.)

Characteristics			F	PT6900 SERII	ES	
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	Io	$T_a = +25^{\circ}C$, natural convection				
		$V_{in} = 5.0V$ $V_o = -2.0V / -1.5$ $V_o = -5.2V$	V 0.1 (1) 0.1 (1)	_	6.0 ⁽²⁾ 3.5 ⁽²⁾	А
		$V_{in} = 3.3V$ $V_o = -2.0V$ $V_o = -5.2V$		Ξ	5.0 ⁽²⁾ 2.5 ⁽²⁾	А
Input Voltage Range		$0.1A \le I_0 \le I_{max}$ PT6901 PT6902/PT690	3 4.5	_	5.5	
1 0 0		PT6904/PT690	5 3.1	_	3.6	V
Output Voltage Tolerance	ΔV_o	Nominal V_{in} , $I_o = I_{max}$ $0^{\circ}C \le T_a \le +60^{\circ}C$	$V_{\rm o}-0.05$	_	V_{o} + 0.05	V
Output Adjust Range	Vo	Pin 14 to V_0 or GND $V_0 = -2.0$		—	-4.4	
		$V_0 = -5.2$		-	-6.5	V
		V _o = -1.5	7 –1.2	_	-3.4	
Line Regulation	Regline	Over Vin range, Io =Imax	—	±0.5	±1.0	%
Load Regulation	Regload	$V_{in} = V_{nom}, 0.1 \le I_o \le I_{max}$		±0.5	±1.0	%
V _o Ripple/Noise	V_n	$V_{in} = V_{nom}, I_o = I_{max}$ $V_o = -1.5V/-2.0V$ $V_o = -5.2V$		40 50	_	mV
Transient Response with C _{out} = 330μF	${\operatorname{V}_{\mathrm{tr}} \atop \mathrm{V}_{\mathrm{os}}}$	I_o step between $0.5 x I_{max}$ and I_{max} V_o over/undershoot	_	200 200	_	μSec mV
Efficiency	η		7 —	65 70 77		%
		$V_{in} = +3.3 \text{ V}, I_o = 0.5 \text{ x} I_{max}$ $V_o = -2.0 \text{ V}_o = -5.2 \text{ V}_o$		67 75	_	%
Switching Frequency	f_{o}	Over Vin and Io ranges	500	_	600	kHz
Absolute Maximum Operating Temperature Range	Та	Over V _{in} Range	0	—	+85 (2)	°C
Storage Temperature	Ts		-40	_	+125	°C
Weight	_	Vertical/Horizontal	_	28/33		grams

Notes: (1) ISR-will operate down to no load with reduced specifications. (2) See SOA curves or contact the factory for the approrpiate derating.


For technical support and more information, see inside back cover or visit www.ti.com/powertrends



PT6900 Series

Typical Characteristics

12 Watt 5V/3.3V Input Plus to Minus Voltage Converter

Note A: All data listed in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the DC-DC Converter. Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer's maximum operating temperatures

🦞 Texas Instruments

Airflow

- 200LFM

-- 120LFM

-60LFM

4

-Nat conv

PT6900/6910 Series

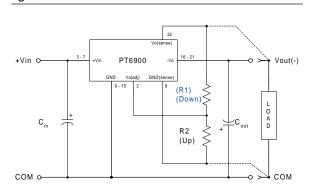
Adjusting the Output Voltage of the PT6900/PT6910 Positive to Negative Converter Series

The negative output voltage of the Power Trends PT6900 Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 gives the allowable adjustment range for each model in the series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 2 (V_o adjust) and pin 8 (Remote Sense GND).

Adjust Down: Add a resistor (R1), between pin 2 (V_{o} adjust) and pin 22 (Remote Sense V).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, either (R1) or R2 as appropriate.


Notes:

- Only a single 1% resistor is required in either the (R1) or R2 location. Do not use (R1) and R2 simultaneously. Place the resistor as close to the ISR as possible.
- 2. Never connect capacitors from V_o adjust to either GND, V_{out} , or the Sense pins. Any capacitance added to the V_o adjust pin will affect the stability of the ISR.
- 3. If the sense pins are not being used, the resistors (R1) and R2 can be connected to V_{out} and GND respectively.
- 4. An increase in the output voltage must be accompanied by a corresponding reduction in the maximum output current. The revised maximum output current must be reduced to the equivalent of 12Watts.

i.e.
$$I_{out}$$
 (max) $= \frac{12}{V_a}$ Adc,

where V_a is the adjusted output voltage.

The respective values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulas.

(R1) =
$$\frac{24.9 (V_a - V_r)}{(V_o - V_a)} - R_s k\Omega$$

R2 = $\frac{24.9 V_r}{(V_a - V_o)} - R_s k\Omega$

Where:

- - - -

Vo = Original output voltage

V_a = Adjusted output voltage

Vr = Reference voltage in Table 1

 R_s = The resistance given in Table 1

Table1				
PT6900/PT6910 ADJUSTMENT RANGE AND FORMULA PARAMETERS				
Series Pt #				
5.0V Bus	PT6903/13	PT6901/11	PT6902/12	
3.3V Bus		PT6904/14	PT6905/15	
Vo (nom)	-1.5V	-2.0V	-5.2V	
Va (min)	-1.2V	-1.4V	-2.7V	
V _a (max)	-3.4V	-4.5V	-6.5V	
Vr	-1.0V	-1.0V	-0.92V	
Rs (kΩ)	12.7	10.0	17.4	

PT6900/6910 Series

Table 2

	910 ADJUSTMENT	NLOISTON VALUE	5				
Series Pt #	PT0000/10	PT0001/11	PT0000/10	Series Pt #	DTC003/12	DTC001/11	DTC002/12
5.0V Bus	PT6903/13	PT6901/11	PT6902/12	<u>5.0V Bus</u> 3.3V Bus	PT6903/13	PT6901/11 PT6904/14	PT6902/12 PT6905/15
3.3V Bus	-1.5Vdc	PT6904/14 -2.0Vdc	PT6905/15 -5.2Vdc		-1.5Vdc	-2.0Vdc	-5.2Vdc
/ _o (nom) / _a (req'd)	-1.3Vac	-2.0Vdc	-5.2Vac	V _o (nom) V _a (req'd)	-1.3Vuc	-2.0Vuc	-3.2VuC
-1.2	(3.9)kΩ			-3.9		3.1kΩ	(39.7)kΩ
-1.3	(24.7)kΩ					2.5kΩ	(46.5)kΩ
-1.4	(86.9)kΩ	(6.6)kΩ		-4.1		1.9kΩ	(54.6)kΩ
-1.5	`	(14.9)kΩ		-4.2		1.3kΩ	(64.3)kΩ
-1.6	236.0kΩ	(27.4)kΩ		-4.3		0.8kΩ	(76.1)kΩ
-1.7	112.0kΩ	(48.1)kΩ		-4.4		0.4kΩ	(90.9)kΩ
-1.8	70.3kΩ	(89.6)kΩ		-4.5		0.0kΩ	(106.0)kΩ
-1.9	49.6kΩ	(214.0)kΩ		-4.6			(135.0)kΩ
-2.0	37.1kΩ			_4.7			(171.0)kΩ
-2.1	28.8kΩ	239.0kΩ		4.8			(224.0)kΩ
-2.2	22.9kΩ	115.0kΩ		4.9			(313.0)kΩ
-2.3	18.4kΩ	73.0kΩ		-5.0			(491.0)kΩ
-2.4	15.0kΩ	52.3kΩ					(1020.0)kΩ
-2.5	12.2kΩ	39.8kΩ					
-2.6	9.9kΩ	31.5kΩ		-5.3			212.0kΩ
-2.7	8.1kΩ	25.6kΩ	(0.3)kΩ				97.1kΩ
-2.8	6.5kΩ	21.1kΩ	(2.1)kΩ	-5.5			59.0kΩ
-2.9	5.1kΩ	17.7kΩ	(4.0)kΩ	-5.6			39.9kΩ
-3.0	3.9kΩ	14.9kΩ	(6.1)kΩ				28.4kΩ
-3.1	2.9kΩ	12.6kΩ	(8.5)kΩ	-5.8			20.8kΩ
-3.2	2.0kΩ	10.8kΩ	(11.0)kΩ	-5.9			15.3kΩ
-3.3	1.1kΩ	9.2kΩ	(13.8)kΩ	6.0			11.2kΩ
-3.4	0.4kΩ	7.8kΩ	(16.9)kΩ	-6.1			8.1kΩ
-3.5		6.6kΩ	(20.4)kΩ	6.2			5.5kΩ
-3.6		5.6kΩ	(24.3)kΩ	-6.3			3.4kΩ
-3.7		4.7kΩ	(28.7)kΩ	-6.4	. <u></u>		1.7kΩ
-3.8		3.8kΩ	(33.8)kΩ	-6.5			$0.2k\Omega$

 $\overline{R1 = (Blue)}$

R2 = Black

W Texas Instruments

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated